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does not show any manifestation of ion-pair formation in terms 
of an observable g shift. This can be rationalized by considering 
the orbital symmetries of the cation and anion and the possible 
structures of the ion pair. The highest occupied molecular or­
bital (HOMO) of TMB, from which one electron is removed 
to form TMB+-, has a nodal plane passing through carbons 3 
and 6 (Figure 4a). If the ion pair with I - has a structure in 
which the counteranion is placed on the yz nodal plane (such 
as Figure 4a) or in which the anion vibrates symmetrically with 
respect to this plane, there will be no net overlap between the 
p orbitals on I - and the TT orbital of TMB+ - and hence no ob­
servable g shift. If the ion pair were to have a structure in which 
the anion is located away from the yz plane (for example, 
Figure 4b) an appreciable overlap between the HOMO of 
TMB+- and appropriate p orbitals on I - could produce an 
observable g shift. The lack of an experimentally observed g 
shift is therefore consistent with ion-pair formation between 
TMB+- and I - if the structure of the ion pair is similar to 
Figure 4a. 

If the TMB+- and I 3 - ion pair were to have a structure 
analogous to the TMB+- I - ion pair (i.e., Figure 4c),33 the 
observed g shift could be explained. Overlap between the 
nonbonding p orbitals of the terminal iodine atoms of appro­
priate symmetry with the HOMO of TMB+- could result in 
a net transfer of electron density from I3 - to TMB+-. Thus the 
excited-state TMB !3- would mix with the ground-state TMB+-
I3 - resulting in a large g shift. 

The similar interactions noted for 1,4-DMA+- and PTH+-
with I 3

- and the lack of interaction observed for TMTH+- and 
9,10-DMA+- may also be related to the structure of the ion 
pairs. Further work on the effect of ion-pair structure on the 
magnitude of the g shift and on the effect of solvent on the 
equilibrium constant are currently underway. 
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the choice of the underlying basic approach—mostly transi­
tion-state theory (TST)1 '2,9 ' '0—and reaction system—mostly 
H + H2—there arise some problems that must be considered 
carefully in assessment of the utility of the tunnelling correc­
tions. Among the points of interest in this respect are the choice 
of a correct potential surface when comparing with experi-
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mental results,4-" the validity of TST and the separability 
assumption,4-l2-13 the neglect of reaction path curvature,14-15 

adiabaticity or internal energy conservation (including the 
definition of the proper effective potentials),3-16-19 the defi­
nition of a proper (tunnelling) reaction path, which may not 
be identical with the usual minimum energy path ("corner 
cutting"),20 errors eventually introduced by the reduction of 
the dimensionality of tunnelling,21 and errors due to the in­
flexibility of the Eckart or Bell potentials, particularly those 
connected with threshold behavior of the reaction.3-2' -22 

Investigations avoiding a number of these pitfalls have 
concentrated on collinear reactions, using exact quantum re­
sults as reference.3.11.18,19,21.22 Conclusions drawn from these 
tests—H + H2 again—were generally not favorable for the 
use of Eckart potentials (even less so for the Bell parabola). 

Other reactions for which exact collinear quantum reaction 
probabilities are available, and which might hence serve as 
additional test examples, include the reactions of various hy­
drogen isotopes with F2 or Cl2.23-27 Now the specific charac­
teristics of these reactions make it seem probable from the 
outset that simple tunnelling approaches might work better 
than for the H + H2 reaction. Certainly, although in this re­
spect not differing from H + H 2, the energy dependence of the 
reaction probabilities strongly resembles that of M1D barrier 
permeabilities. However, in contrast to H + H2, the barriers 
of the potential energy surfaces for H + F2 or CI2 are located 
far out in the reactant valleys. This means that there is no 
significant reaction path curvature before, near, or at the 
saddle point (transition state). This feature should result in 
negligible curvature effects, should facilitate separability of 
reaction path motion, and will provide little opportunity for 
corner cutting reaction paths thus making the minimum energy 
path the most likely tunnelling path. With respect to TST, an 
equilibrium phase space distribution is very likely to be 
maintained at the transition state.28 Since in these cases the 
transition state can approximately be thought of as a slightly 
perturbed reactant molecule, the concept of vibrational adia­
baticity at the transition state (VA)3-16-17-29"31 should hold. 
However, conservation of vibrational energy (CVE)2-32 would 
not differ very much from VA and might also be advocated; 
comparison with the exact results should resolve this prob­
lem. 

Finally, the potential barriers are far lower for the hydro­
gen-halogen reactions than for the H + H2 case. Extreme 
threshold regions where reaction probabilities are smaller than 
0.01 are therefore not expected to contribute significantly to 
reaction rates in the interesting temperature range around 
room temperature or above. If the energy range near the top 
of the barrier dominates in thermal rate constants, then the 
Eckart potential, being fitted to the exact one at the top of the 
barrier, ought to be a good approximation. 

In this paper the collinear reactions 

Mu + F2(^) — MuF + F (Rl) 

H -I- ¥2(v) — HF + F (R2) 

D + F2(v) ~* DF + F (R3) 

T + F2(D) ^ T F + F (R4) 

Mu + Cl2(^) -* MuCl + Cl (R5) 

H + Cl2(I?) — HCl + Cl (R6) 

D + Cl2(U) — DCl + Cl (R7) 

T + Cl2(^) — TCl + Cl (R8) 

with the reactant molecules in v = 0,1, and, for (R2) and (R6), 
in v = 2, are treated within the VA approximation using both 
the Eckart and the Bell approach to represent the M1D po­
tentials along the reaction path. A simple estimate is used to 

obtain the necessary parameters for the effective potentials 
from a transition state normal mode analysis. For the v = 0 
reactant state, the CVE approximation and a hybrid between 
VA and CVE are also tested. For reactions (Rl )-(R4), (R6), 
and (R7), there exist exact quantum calculations,23-27 and it 
will be demonstrated that the quantum reaction probabilities, 
and hence also the corresponding thermal average rate con­
stants, can be approximated very accurately on the basis of 
M1D Eckart tunnelling within the framework of the VA theory 
of collinear reactions. 

In section II, the results of the transition state normal mode 
analysis and the extraction of the effective potential parameters 
are described. In section III, barrier permeabilities are cal­
culated for the Eckart and Bell potentials, and, where appro­
priate, are compared with exact quantum reaction probabili­
ties. In the last step, the corresponding thermal rate constants, 
activation energies, tunnelling corrections, and isotopic rate 
constant ratios are worked out and again compared with the 
corresponding quantum results (section IV). Conclusions are 
in section V. 

II. Transition State Properties and Tunnelling Potential 
Parameters 

In the quantum calculations referred to above,2327 potential 
surfaces of the LEPS variety33 have been used. For reactions 
(R1)-(R4), the surface number II of Jonathan et al.,34 with 
Sato parameters SHF = 0 and SFF = —0.35, was employed. 
The surface35 used by Baer23 and by Essen et al.24 in their 
quantum calculations of reactions (R6) and (R7) has both Sato 
parameters set to zero. The asymptotic properties of these 
surfaces have been given before23-25-34-36 and are not repeated 
here. 

MlD potentials appropriate to describe barrier penetration 
along the reaction path of the LEPS surfaces are then con­
structed, using both the asymmetric Eckart function5 and Bell's 
inverted parabola.6-7 

The asymmetric Eckart potential along the reaction coor­
dinate x can be written in terms of exothermicity and barrier 
height (rather than using the usual5-8-37 composite parame­
ters) 

V(x) = QY(x)/\\ - Y(x)} -P2Y(X)ZW - Y(X)Y (D 
with 

Y= -exp(27rV£)andP = £1 / 2 + (B + QY P-

where Q is the exothermicity, B is the barrier height measured 
from the reactants, and L is a characteristic length related to 
the tunnelling frequency v* and the reduced mass n for reac­
tant translation, 

2w/L = ir I v* I (2M) l/2/Y(fi2 + BQY/2 (2) 

Bell's (infinite) inverted parabola is given by 

V(x) = B - 2nv2\v*\2x2 (3) 

and truncation is commonly taken into account by simply ig­
noring negative energies. Note that v* is imaginary and |K*| 
= —iv*. In order to obtain the parameters B, Q, and v* 
necessary to specify the potentials (1) and (3), either in the VA 
or the CVE approach, a normal mode analysis for the transition 
state was carried out. The harmonic force constant matrix and 
the final saddle-point geometry were determined from a si­
multaneous three-dimensional least-squares fit to the LEPS 
surface saddle point region of a complete polynomial of the 
degree three. Using these force constants in Wilson's FG for­
malism,38 the three harmonic normal mode frequencies y*vib> 
v*4, and —ii>*s were calculated. The transition state properties 
for reactions (R1)-(R8) are listed in Table I. 

Next, j»*Vjb was inserted into the Morse formula for vibra­
tional energy levels, 
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Table I. Transition State Properties of LEPS Potential Surfaces 

/ • * , / * < 

r*2/k
d 

4>*/deg 
Bs/kJ mol-' 
f ' ^ v i b / c m - 1 e 

r '^^/cm- 1 e-f 
c-in*/cm-] " 

Mu + F2" 

848 
149 

1652/ 

H + F2" 

787 
57.8 

608/ 

D+ F2" 

1.897 
1.437 
180 
9.84 

771 
46.1 

445/ 

T + F2" 

763 
41.5 

371/ 

Mu+ Cl2* 

546 
104 

1384/ 

H + Cl2* 

524 
37.5 

490/ 

D + Cl2* 

2.251 
2.017 
180 

10.13 
516 
28.3 

354/ 

T + Cl2* 

512 
24.5 

294/ 

" Surface 11 of Jonathan etal.34* Surface of Kuntzetal.35 ' Distance X-F or XCl. d Distance F-F or Cl-Cl.e Masses used: mMu = 0.114 
u, WH = 1 u, WD = 2 u, /MT = 3 u, WF = 19 u, ma = 35 u (1 u = 1.6605 X 10-24 g). f Doubly degenerate. 
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Figure 1. Scaling of tunnelling frequencies v* for effective potentials using 
parabola properties. Drawn to scale for T + F2. 

«„=( v + \ ) N^V - (4^)"1 (v+\y {NLHV)I (4) 

where De is the dissociation energy and Ni is Avogadro's 
number. The effective VA barrier heights Bc are then deter­
mined as the difference between the energy levels e( at the 
transition state and the reactant molecule (S0 is frequently 
called AKVAZC). The CVE barrier height is of course equal to 
the barrier height of the original potential surface, B5 (the 
subscript s will henceforth be used to characterize potential 
surface properties; likewise v, 0, 1,. . ., will refer to effective 
VA values). 

The imaginary frequency c*s describes the shape of the 
barrier along the reaction path. It is therefore the appropriate 
value to use for v* in the CVE approximation for the MlD 
potentials (1) and (3). It has also been used frequently, but 
inconsistently, in a hybrid approach together with the VA 
barrier height Bo-21'39 However, Truhlar and Kuppermann3 

have pointed out that a consistent VA theory requires that the 
tunnelling frequencies of the proper effective potentials be 
used. In the present paper a simple scaling approximation is 
used for this purpose. This scaling.procedure is depicted 
schematically in Figure 1. The change in the vibrational fre­
quency of a truncated parabolic barrier on variation of the 
barrier height, and assuming fixed truncation point and basis 
width, is described by 

hv*v = hv*s{B,/Bsyi2 (5) 

In view of the small differences between Bs and BQ or B\ in the 
present examples, eq 4 will also hold approximately for the true 
effective potentials. The transition state bending frequencies 
p*0 are not required for the collinear case. They have been used 
in calculations of rate constants for the corresponding three-
dimensional rate constants reported in another paper.40 

Finally, the exothermicities Q have to be specified for the 
asymmetric Eckart potential (1). Despite the fact that reac­
tions (R1)-(R8) are well known to yield vibrationally excited 

products,23-27,34-36 t n e exothermicities used have been cal­
culated from VA (or CVE) assumptions for the complete re­
actions. This corresponds to the physical picture that vibra­
tional excitation occurs in a separate step in the curved region 
of the potential surface, after fully adiabatic barrier trans­
mission. Some sample VA calculations have also been carried 
out with the exothermicity Qo reduced by the product's average 
vibrational energy content, go — (Ev>). Owing to the generally 
large values of Q, this does not bring about substantial changes 
in the barrier region of the Eckart potential, and thus in the 
barrier permeabilities. The use of Qo was preferred here as a 
more generally applicable recipe, since (E1-') will normally be 
unknown for "new" potential surfaces. It should be mentioned 
that the CVE assumption actually violates zero-point energy 
requirements for the product molecules; but again using Qo 
instead of Q& does not lead to any substantial change in the 
results and therefore the consistent use of the CVE values Qs 
was preferred. 

The parameter values obtained by the methods outlined 
above are collected in Table II; values for v = 2 which are not 
included may easily be regenerated from the data given. 

III. Reaction Probabilities 
The transitional energy (Ej) dependent permeabilities of 

the MlD barriers (1) and (3) are5'7'8-37 

PHET) = 1 -
cosh 27r(a — b) + cosh 2ird 
cosh 2ir(a + b) + cosh 2nd 

and 

PB(ET) = |1 + exp 2ir(B - Ej)/NLhv*\ 

(6) 

(7) 

respectively, where in (6) a = ^I2(EJI CY I2, b = 1III(ET + 
Q)ICYI1, d = y2[(P2 ~ C)/C]'/2, and C = h2/%nL2. 

Before comparing these permeabilities with collinear 
quantum reaction probabilities P1Si(Ej), it will be useful to 
discuss briefly the latter. The data for reactions (R1)-(R4) are 
basically taken from the state path sum calculations of Connor 
et al.,25-27 although some additions should be noted. For re­
action (Rl), the "line of no return" reaction probabilities, 
which in ref 27 were reported to be somewhat on the low side, 
have been reanalyzed or recalculated, and extend to higher 
translational energies, including F2 (v = 1) as well.41 The re­
vised results are now believed to be accurate to better than «3% 
for the rotated Morse cubic spline fit to the LEPS surface (see 
below for the further discussion of this point). There are, 
however, some indications from classical trajectory calculations 
on this system43 that the "line of no return" probabilities for 
Mu + F2 (v = 1) may not tell the whole story, since there may 
be additional back-reflection from the repulsive wall even at 
the low translational energies covered here. The "line of no 
return" probabilities would miss such contributions. No effects 
like this were observed in trajectory calculations for (R2)-
(R4).43 Results for H + F2 (v = 1) at low values of Ej are a 
byproduct of the v = 0 calculations, but were not reported in 
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Figure 2. Comparison of quantum reaction probabilities and approximate ones for collinear Mu + F2 (c). (a) r = 0. (b) c = I. Full lines (—), quantum 
calculations:41 dashed lines ( — ) , VA Eckart; filled circles ( • ) . VA Bell: dash-dotted (- •). VA classical. 

Table II. Parameters for Unsymmetric Eckart and Bell Potentials" 

Q*h 

As 
-iNLhv*s 

Q0 
B0 
-iNLhf*0 

Q\ 
Bi 
-iNLhu*] 

Mu + F2 

433.5 
9.83 

19.75 
368.6 

9.54 
19.46 

252.6 
9.00 

18.89 

H + F2 

433.5 
9.83 
7.27 

413.8 
9.20 
7.03 

376.5 
7.97 
6.54 

D-FF2 

433.5 
9.83 
5.32 

420.5 
9.08 
5.11 

395.9 
7.68 
4.70 

T + F2 

433.5 
9.83 
4.44 

423.4 
9.04 
4.26 

412.8 
7.53 
3.89 

Mu-F Cl2 

203.3 
10.13 
16.55 

155.8 
10.04 
16.48 

111.5 
9.85 

16.33 

H-FCl2 

203.3 
10.13 
5.86 

188.8 
9.92 
5.80 

161.0 
9.48 
5.67 

D-FCl2 

203.3 
10.13 
4.24 

193.7 
9.85 
4.18 

175.4 
9.35 
4.08 

T-FCl2 

203.3 
10.13 
3.51 

195.9 
9.82 
3.46 

181.8 
9.27 
3.36 

0 For notation see text. * All entries in kj mol" 

ref 25 and 27. For reactions (R2)-(R4) a translational energy 
correction of -FO.08 kJ mol-1 has been applied to account for 
the difference in the true asymptotic F2 states and the actual 
value at the truncation point of the potential surface used in 
the quantum calculations; this correction remained unconsi­
dered in ref 25 and 27 (for reaction (Rl), the corresponding 
correction is negligibly small). 

For reactions (Rl) and (R2), the rotated Morse cubic spline 
fit may also deviate to some extent from the original surface 
in the vicinity of the barrier crest. In the mass scaled coordinate 
system used, the reactant's valley containing the barrier is very 
strongly compressed, and the standard mesh used in the spline 
interpolation is sufficiently wide in these cases to permit a 
deviation in the barrier height of about 0.15 kJ mol-1 for re­
action (Rl) and of about 0.10 kJ mol-1 for reaction (R2). 
Smaller ambiguities arise in the less compressed D and T 
cases. 

The reference probabilities for reactions (R6) and (R7) were 
read off Figures 5, 7, 9, and 11 of ref 24. 

Results from eq 6 and 7 using the VA parameters of Table 
II are compared with the quantum reaction probabilities in 
Figures 2-6. The results for the Bell parabola eq 7 are given 
separately only for the Mu and H reactions. For the other 
isotopes they do not deviate strongly from the Eckart per­
meabilities. Generally the agreement between the PV

E(ET) and 
PV

Q(ET) is excellent. There are slight deviations for reactions 
(Rl) and (R2) which are in accordance with the observations 
about the potential fits noted above. An interesting additional 
deviation occurs for the light isotopes, Mu and H, at high 

translational energies, where the MlD probabilities are a little 
larger than the quantum ones. For D and T, agreement is 
perfect over the whole energy range. For these isotopes, the 
inverted parabola is also quite accurate with only slight de­
viations occurring at low energies. Predictably, the agreement 
of the Bell approach is not good in the muonium reactions, 
where the truncation error must become serious owing to the 
considerable reactivity in the vicinity of the energetic threshold. 
So, for Mu -F F2 (v = 0), the Bell formula predicts that />

0
B(0) 

= 0.043, which will certainly lead to intolerably large errors 
in rate constant calculations at lower temperature. 

A remarkable feature is the extremely good agreement of 
the Eckart approach with P^(ET) for all examples tested. This 
must mean that vibrational adiabaticity at the transition state 
is as well fulfilled for v = 1 as for v = 0. However, for Mu these 
barrier transmission probabilities may not be the final reaction 
probabilities. Both the quantum "line of no return" results and 
the barrier permeabilities may miss some back-reflection oc­
curring later on the potential surface, namely, at the repulsive 
wall.43 

In summary, reactions (R1)-(R8), and certainly other 
similar ones, can to an excellent approximation be understood 
in terms of one-dimensional barrier penetration, along the 
minimum energy path within a VA framework. Starting from 
extended LEPS surfaces, M1D effective potentials can be well 
enough approximated by an unsymmetric Eckart function, 
which permits a very convenient and simple treatment of these 
reactions. This state of affair differs somewhat from the one 
in H -F H2

4'18-19'21 owing to some particular properties of the 
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Figure 3. Comparison of quantum reaction probabilities and approximate ones for collincar H-I-F2 (('). (a) c = 0. (b) v = 1. Full lines ( —), quantum 
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calculations;24 dashed lines (- - -), VA Eckart; filled circles ( • ) , VA Bell; dash-dotted ( ), VA classical. 
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present reactions anticipated in the Introduction, namely, the 
absence of significant reaction path curvature in the barrier 
region and the rather low barrier height. Certainly at very low 
energies the Eckart function may well deviate from the "cor­
rect" effective potential, since only the shape of the barrier 
crest enters into eq 1. However, the extreme threshold range 
could not be tested, since there are no exact quantum results 
available in the range where PvQ(Ej) < 0.001. 

In any case, these energy ranges do not contribute signifi­
cantly to total reaction at temperatures above 200 K. 

Returning again to the present results it is found that the 
CVE approximation does not give results in agreement with 
the quantum ones (this was also found for the H + H2 reac­
tion).18,19 This can already be inferred from a superficial in­
spection of the quantum probabilities, which are indeed cen­
tered at the VA barrier heights, but not at the CVE values of 
9.8 kJ mol-' for X + F2 or 10.1 kJ mol-' for X + Cl2. Con­

trary to the quantum results, the CVE results do not show a 
mass-dependent shift along the energy coordinate. Among the 
reactions treated here, the difference between the VA barrier 
height B0 and the CVE value B% is largest (0.79 kJ mol-') for 
reaction (R4); Figure 6 demonstrates clearly how the CVE 
results deviate from the quantum ones in this case. 

Matters become still worse for vibrationally excited reac-
tants, because the B\ are even lower than the BQ values. For 
reaction (R4), the difference between B\ and Bs is already 2.30 
kJ mol-1. Generally for reactions (R1)-(R8), the use of the 
correct VA barrier height is more important than the use of 
the correct v* values. This is manifested by the fact that the 
hybrid approach using (inconsistently) Bo and "*s leads to 
results almost as good as the correct VA ones. This finding 
provides also an additional justification for the use of the 
scaling approximation, eq 5. 

In Figures 2-6, step functions at the corresponding values 
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12 
ET /kJ mol"1 

Figure 5. Comparison of quantum reaction probabilities and approximate ones for (a) collinear D + F2 (r 
(—), quantum calculations;24-27 dashed lines ( — ) , VA Eckart; dash-dotted ( ). VA classical. 

• 0); (b) collinear D + Cl2 (r = 0). Full lines 

10 
E T / 4 J mol"1 

Figure 6. Comparison of quantum reaction probabilities and approximate 
ones for collinear T + Y1 (r = 0). Full line (—), quantum calculations;27 

dashed line (- - -), VA Eckart; dash-dotted ( ), VA classical; dotted 
line ( ), CVE Eckart. Arrow marked CVE indicates the CVE barrier 
height Bs. 

of B0 are also shown. These are to be considered as the refer­
ence classical reaction probabilities, against which tunnelling 
is measured. 

PVCL(ET) = (8) 
0 E-x < B1 

1 E-x > BD 

These step functions are related to TST.42 Alternatively, from 
a collisional point of view, they correspond to a one-dimensional 
analogue of (three-dimensional) hard sphere collisions with 
the critical energy of reaction being the one necessary to reach, 
adiabatically, the transition state. 

Collinear classical trajectory calculations with fixed initial 
v have been carried out for reactions (R1)-(R4) and have been 

compared with the quantum results.41 For reactions (R6) and 
(R7), Essen et al. considered a number of different techniques 
for collinear classical trajectories, and compared the corre­
sponding results with each other and with exact quantum 
calculations.24 

IV. Rate Constants and Activation Energies 
From any of the various reaction probability curves given 

in section III, the corresponding rate constants for a fixed 
initial vibrational state and a Boltzmann distribution of 
translational energies corresponding to a temperature T can 
be calculated.19-29-42 

Jt1.(T) = (2^MA:T)-'/2 J AE1P1(E1) exp(-ET/RT) 

(9) 

(k is the Boltzmann constant and R = NLk, the gas constant). 
The total thermal rate constants for fully Boltzmann distrib­
uted reactants can then be assembled from the weighted 

un44 

KT) = E ycUT) (10) 

with y„ = cxp(-iv/RT)/2,' exp(- e^/RT). 
At 550 K, 98% of the F2 molecules and 94% of the Cl2 

molecules are in v = 0 or 1, and it is sufficient to include two 
summation terms in (10) to obtain rate constants accurate to 
about 2%, provided that the missing 2 and 6% are treated as 
arising from v = 1 as well. For reactions (R2) and (R6), this 
has been checked by actually including higher terms. At higher 
temperatures, more than two terms should be included. In 
addition, at higher translational energies the reaction proba­
bilities actually start to decrease again (see, e.g., the Mu + F2 
trajectory results43 or the H + Cl2 quantum results).23-24 This 
behavior, however, is not reproduced by the P^(E1) and 
PV

B(ET) curves. In order to obtain the quantum rate constants 
kftiT), the quantum reaction probability curves had to be 
extrapolated to high Ej values. A smooth graphical extrapo­
lation governed by the Eckart results has been used. This of 
course does also not take into account a possible decrease of 
the P11Q(ET) at high energies. However, at lower temperatures 
neither this simplification nor the method of extrapolation has 
significant influence on the calculated rate constants, since the 
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Table III. Rate Constants, Tunnelling Correction Factors, and Isotopic Rate Constant Ratios at 300 K0 

koQb 

koE 

ToQ 

ToE 

ToB 

r0
w 

/ o Q 

/ o E 

/ o B 

/ o w 

/ o C L 

(MX,Y2/MH.Y2) 1 / 2 

*,Q 

k,E 

kE 

r,E 

rE 

Mu + F2 

1.47 (4) r 

1.61 (4) 
3.60 
3.94 
5.30 
(3.50) 
6.71 
7.57 
9.57 
(6.71) 
2.55 
2.93 
1.85(4) 
1.86(4) 
1.61 (4) 
3.67 
3.94 

H + F2 

2.19(3) 
2.13(3) 
1.38 
1.34 
1.42 
1.33 
1 
1 
1 
1 
1 
1 

3.34(3) 
2.15(3) 
1.28 
1.34 

D + F2 

1.39(3) 
1.40(3) 
1.16 
1.17 
1.20 
1.18 
0.63 
0.66 
0.64 
0.67 
0.75 
0.72 

2.40(3) 
1.42(3) 
1.14 
1.17 

T + F2 

1.10(3) 
1.12(3) 
1.09 
1.11 
1.13 
1.12 
0.50 
0.53 
0.50 
0.53 
0.63 
0.59 

2.02(3) 
1.14(3) 
1.09 
1.11 

M u + Cl2 

1.14(4) 

3.42 
4.40 
(2.82) 

7.72 
9.72 
(6.42) 
2.80 
2.94 

1.23(4) 
1.15(4) 
3.41 
3.41 

H + Cl2 

1.45(3) 
1.47(3) 
1.21 
1.24 
1.27 
1.23 
1 
1 
1 
1 
1 
1 
1.75(3) 
1-74(3) 
1.49(3) 
1.23 
1.24 

D + Cl2 

9.74(2) 
9.71 (2) 
1.12 
1.12 
1.13 
1.12 
0.67 
0.65 
0.64 
0.66 
0.72 
0.71 

1.18(3) 
9.88(2) 
1.11 
1.12 

T + Cl2 

7.77(2) 

1.08 
1.08 
1.08 

0.52 
0.51 
0.53 
0.60 
0.59 

9.69(2) 
7.91 (2) 
1.07 
1.08 

For notation see text. b Rate constants in cm s ' molecule '. f Numbers in parentheses indicate powers of 10. 

Table IV. Rate Constants, Tunnelling Correction Factors, and Isotopic Rate Constant Ratios at 550 K" 

k<P h 

koE 

r0Q 
ToE 

ToB 

r0
w 

/ O ^ 
/ o E 

/ o B 

/ o w 

/ o C L 

(MX,Y2/MH.Y2) I / 2 

* , Q 

*,E 

k*-

r,E 

rE 

Mu + F2 

4.73 (4)<-
4.98 (4) 
1.52 
1.60 
1.76 
1.75 
3.69 
3.98 
4.29 
4.33 
2.72 
2.93 
5.42 (4) 
5.50 (4) 
5.05 (4) 
1.57 
1.60 

H + F2 

1.28(4) 
1.25(4) 
1.12 
1.10 
1.12 
1.10 
1 
1 
1 
1 
1 
1 

1.62(5) 
1.30(5) 
1.08 
1.09 

D + F2 

8.83(3) 
8.86(3) 
1.05 
1.05 
1.06 
1.05 
0.69 
0.71 
0.70 
0.71 
0.74 
0.72 

1.19(4) 
9.23(3) 
1.05 
1.05 

T + F2 

7.23(3) 
7.29(3) 
1.03 
1.04 
1.04 
1.04 
0.56 
0.58 
0.58 
0.58 
0.61 
0.59 

1.01 (4) 
7.63(3) 
1.03 
1.04 

M u + Cl2 

4.23(4) 

1.52 
1.61 
1.54 

4.07 
4.29 
4.12 
2.86 
2.94 

4.43 (4) 
4.28 (4) 
1.52 
1.52 

H + Cl2 

1.03 (4) 
1.04(4) 
1.06 
1.07 
1.07 
1.07 
1 
1 
1 
1 
1 
1 
1.14(4) 
1.15(4) 
1.07(4) 
1.07 
1.07 

D + Cl2 

7.32(3) 
7.30(3) 
1.05 
1.03 
1.05 
1.04 
0.71 
0.70 
0.70 
0.71 
0.72 
0.71 

8.14(3) 
7.58(3) 
1.03 
1.03 

T + Cl2 

5.97(3) 

1.02 
1.03 
1.02 

0.58 
0.57 
0.58 
0.60 
0.59 

6.74(3) 
6.16(3) 
1.02 
1.02 

For notation see text. * Rate constants in cm s_1 molecule '. c Numbers in parentheses indicate powers of 10. 

low-energy region dominates the rate constant integral. This 
was checked by using also different extrapolation schemes. At 
the other end of the energy scale, no quantum results are 
available in the threshold region, which will be of importance 
for low temperatures. For these reasons, the temperature in­
terval from T = 230 K to T = 900 K has been considered in 
this work. 

Among the reaction probability functions discussed in the 
previous section, only P^(Ej) can be integrated analytically 
to yield the well-known form 

kv
CL(T) = (kT/lirny /2exp(- BJRT) (H) 

The quantum, Eckart, and Bell rate constants kcQ, kL-E, and 
kv

B have to be obtained from numerical integration of eq 17, 
inserting Pv

Q, PV
E, and PC

B, respectively. 
The calculated rate constants k(p(T) and koE(T) for 

(R1)-(R8), T = 300 and 550 K, are displayed in Tables III 
and IV. Classical rate constants and the Bell ones can be cal­
culated from the tunnelling correction factors To(T) also 
given. 

PV
E(ET) and PV

B(ET) differ from PV
CL(ET) solely due to 

nonclassical potential barrier transmission, and the same is 
then true for the rate constants. The tunnelling correction 
factor to the classical rate constant is therefore12,19'32 

The quotient 

r r
E ( r ) = k,E(T)/kv

cHT) 

T1Z(T) = kc»(T)/kvCHT) 

T1Q(T) = kLQ(T)/k,cHT) 

(12a) 

(12b) 

(12c) 

will in principle also contain all contributions arising from the 
neglect of one mathematical dimension. However, for the 
present reactions, no such contributions are of importance, and 
it is apt to call TQ(7) a tunnelling correction factor as well. 

Wigner's tunnelling correction factor TW(T) is also included 
in the tables. This is valid for small amounts of tunnelling and 
is45 

r w ( 7 ) = + ^-\hv*lkT\2 

24 ' ' ' 
(13) 

The numerical values given are derived using VQ*, keeping to 
the spirit of the VA method. Note, however, that Wigner's 
original application of his tunnelling correction factor em­
ployed v*s.

45 

As can be seen from the results, and as expected from the 
behavior of the reaction probabilities, kv

E(T) is usually very 
close to kv

Q(T), except for the small deviation for reaction 
(Rl) which is probably due to the potential surface fit. The Bell 
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Table V. Tolman Activation Energies at 300 and 550 K" 

Mu+ F2 H + F2 D + F- T + F2 M u + Cl2 H + C l 2 D + Cl2 T + Cl2 

5.3 
4.9 
3.7 

(7.2) 
10.8 
4.9 
4.7 
4.9 

8.1 
7.9 
7.0 
7.9 

11.8 
7.6 
7.6 
7.8 

9.0 
9.0 
8.6 
9.2 

10.5 

8.0 
9.0 

10.6 
10.7 
10.6 
10.7 
11.5 

9.6 
10.6 

9.5 
9.5 
9.4 
9.6 

10.3 

8.2 
9.5 

11.0 
10.9 
10.9 
10.9 
11.4 

9.6 
10.8 

9.8 
9.7 
9.6 
9.7 
0.3 

8.3 
9.7 

1.1 
1.0 
1.0 
1.0 
1.3 

9.6 
0.8 

5.9 
4.6 

(8.1) 
11.3 

5.7 
5.9 

8.9 
8.2 
9.1 

12.3 

8.7 
8.8 

10.1 
10.1 
9.9 

10.3 
11.2 
9.8 
9.7 

10.1 

11.7 
11.6 
11.6 
11.6 
12.2 
11.2 
11.2 
11.5 

10.5 
10.5 
10.5 
10.6 
11.1 

10.1 
10.5 

11.8 
11.8 
11.8 
11.8 
12.1 

11.4 
11.7 

10.7 
10.7 
10.7 
11.1 

10.2 
10.7 

11.9 
11.9 
11.9 
12.1 

11.4 
11.8 

£ A oQ 300 K 
£A.O E 

£ A . O B 

£ A . O W 

£ A . O C L 

£ A . . Q 

£ A . I E 

£ A E 

£ A 0
Q 550 K 

£A.O E 

£ A . O B 

£ A . O W 

£ A , O C L 

£ A . I Q 

£ A . I E 

" All entries in kJ mol' 

approach need not be discussed further; at low temperatures 
TV

B(T) is always too large and should not be used. The Wigner 
correction, which neglects higher orders of \hv*/kT\2, should 
not be applied if \hv*\ » kT, as is the case for the Mu reac­
tions at 300 K. Notwithstanding this fact, the r 0

w ( T ) turn out 
to be a good first-guess-type approximation to the quantum 
results even in these cases. For the heavier isotopes H, D, and 
T, agreement with quantum results is extremely good, and 
T0

w(T)k0
ct(T) may serve as a very good analytic expression 

for Jt(F). 
The isotopic rate constant ratios (relative rate constants), 

/(X)(T) = k(X)(T)/k(H)(T), contain a factor (/UH.Y2/VX,Y2)1/2, 
with Y = F, Cl (which for the mass combinations studied here 
is close to (MH/MX) ' ^2)- This is also the high-temperature limit 
for all of the various rate constants; in the present examples 
the k (900) are already close to this behavior. At lower tem­
peratures, only the classical rate constant ratios are close to 
this value, with deviations coming from the mass-dependent 
and hence differing values of B1 in exp(—Bv/RT). For the 
nonclassical rate constant ratios deviations due to the different 
amount of tunnelling for the different isotopes become con­
siderable at room temperature, in particular for the muonium 
reactions. This illustrates the exciting possibilities opened by 
introducing experimental muonium chemistry,46^48 with re­
spect to exploring tunnelling, or to discriminating between 
theoretical models or potential surfaces. In Tables III and IV, 
rate constants, tunnelling corrections, activation energies, and 
isotopic rate constant ratios for reaction out of v = 1, as well 
as those for a Boltzmann ensemble of vibrational levels, are also 
included for the Eckart approach. Their relation to the corre­
sponding values from the other approaches resembles the sit­
uation for v = 0. One can also arrive at the thermal rate con­
stants kE(T) derived above via simple classical TST plus 
Eckart corrections,3 

£ T S T / E ( r ) = r E ( r ) ( £ 7 y 2 T M ) i / 2 . £ ! £ e x p ( _ f l / i ? r ) ( 1 4 ) 

Q v 

with Q*L and Q°D being vibrational partition functions of the 
transition state and the reactant molecule, respectively. The 
tunnelling correction factor r E ( r ) is an average over the 
TV

E(T) given above, using the kL.CL(T) as weights. Thus 
Eckart-corrected classical TST is extremely accurate for the 
reactions considered (at least in the temperature interval 
230-900 K). Care has only to be given to selecting the correct 
VA barrier height and width. The last point may be illustrated 
by considering the CVE rate constants. With the vs* values 
being similar to the VA ones, CVE rate constants will differ 
from the VA ones mainly by a factor exp|(Z?t, - BS)/RT\. At 

1000 K/T 
Figure 7. Arrhenius plots for collinear Mu + F2 (r). Full lines (—), r = 
0; dashed lines (---) , r = 1. Results shown are exact quantum (Q), VA 
Eckart (E), VA Bell (B). and VA classical (CL). k ,Q and A- ,E coincide over 
the whole range. 

300 K, this amounts to errors of «11% for Mu + F2 (v = 0), 
«27% for T + F2 (v = 0), and «60% for T + F2 (v = 1). 
Clearly, the CVE approximation cannot be used for the present 
family of reactions. 

Finally, Tolman activation energies49 are presented in Table 
V. These are given by the local slope of the Arrhenius plot, that 
is, 50,51 

EA(T) = -
d InZt(F) 

(13) d(\/RT') T 
From eq 11, the classical activation energy in VA approxi­
mation is 

EKv
CL(T)=Bv+y2RT (16) 

The activation energy for Wigner corrected rate constants 
is 

/V, 21 In . * | 2 
£ . WfT) = B + ! A P T - L I v I 
tK, (J) Bv+ /2KJ nTvW{T)RT 

(17) 

Activation energies for the other approaches must be obtained 
numerically by inserting eq 9 into eq 15. The accuracy of the 
approximate values follows the same pattern as for the rate 
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I I I '10"'O I 

2 3 4 
1000K/T 

Figure 8. Arrhenius plots for collinear H + F2 ('' = 0) and T + F2 (r = 0). 
Results shown arc exact quantum (Q). VA Eckart (E), VA Bell (B). and 
VA classical (CL). A0

0 and A0
1' coincide over the whole range. 
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1000 K/T 
Figure 9. Arrhenius plots for collinear X + F2 and X + Cb. for Boltzmann 
distributed rcactants. Plots shown are for k¥(T). 

constants. Again, the simple Wigner approach leads to very 
good agreement with quantum mechanical results except for 
the Mu reaction at 300 K (and below). 

For some of the reactions where quantum results are avail­
able, Arrhenius plots for k^(T) are shown in Figures 7 and 8. 
For reactions (R2) and (R4), k(p(T) and k0

E(T) are seen to 
coincide over the whole temperature range (at the scale of the 
figure). Reactions (R3), (R6), and (R7) are not shown sepa­
rately. Again k(P(T), k0

v-(T) (and k0
B(T)) would coincide. 

Owing to the term T1 /2 in eq 11, the classical Arrhenius plots 
are weakly curved. Tunnelling contributions cause an increase 
in this curvature at lower energies. In particular, Arrhenius 
plot curvature is considerable for reaction (1). Again the good 
agreement between the quantum rates and the Eckart ap­
proximation is evident. 

Figure 9 shows the isotope dependence of the Arrhenius 
plots, using Eckart-thermal rate constants kE(T). The decrease 
of the rate constants, and the decreasing influence of tunnelling 
on going from Mu to T, is nicely illustrated. However, it is 
evident that even for the strong tunnelling case Mu + F2 de­
viations from linearity are not terribly prominent over re­
stricted temperature ranges such as usually covered experi­

mentally. Extrapolating to three dimensions, this means that 
unambiguous experimental detection of Arrhenius curvature 
would probably require a temperature interval extending over 
the major part of the one plotted in Figure 9. 

Part of the material in this section parallels investigations 
of Truhlar et al.,52-53 although for the most part the present 
paper is complementing ref 52. Truhlar et al. have determined 
quantum, classical, and Wigner corrected rate constants for 
reaction (R6). In particular, they have focused on comparison 
with classical trajectory rate constants. Classical trajectory 
and exact quantum rate constants have also been compared 
by Essen et al.24 for reactions (R6) and (R7), and by Connor 
et al.41 for reactions (R1)-(R4). 

V. Conclusions 
Starting initially from extended LEPS potential surfaces, 

the VA approximation is found entirely adequate to describe 
accurately reaction probabilities and rate constants (at least 
in the range 230-900 K) of the collinear reactions (R1)-(R8). 
Furthermore, it is sufficient to use an Eckart fit to the MlD 
potential describing reaction path motion, and to use a scaling 
relation to obtain the tunnelling frequencies for these effective 
potentials. Since the agreement extends over a considerable 
range of translational energies, it is not likely to be brought 
about by fortuitous cancellation of errors. Hence each of the 
approximation assumptions involved should actually be closely 
fulfilled (that is, vibrational adiabaticity assumptions, separ­
ability, neglect of reaction path curvature, asymmetric Eck-
art-like shape of the M1D potential, and so on). 

This offers a fast, convenient, and economic method of 
computing collinear reaction probabilities and kinetic data for 
reactions such as (R1)-(R8), particularly if scanning over a 
large number of potential surfaces is involved, e.g., in investi­
gations of the potential surface dependence of reactions. An 
extension of the investigations to the three-dimensional case 
is attempted in another paper.40 
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Background and Development 
Although the planar ground state of ethylene is stable with 

respect to the twisting of the double bond, this is not true of the 
low-lying states. At the perpendicular Did (S = 90°) geometry 
there are four TT2 (2e2) states.' -2 The two lowest of these states, 
which are quite close in energy, are the 1Bi (N state) and the 
3A2 (T state). The highest two, also quite close to each other 
in energy, are the 1E^ (V state) and the 1Ai (Z state). Only the 
lowest of the four states (N state), which correlates with the 
planar ground state and corresponds to the rotational barrier 
of ethylene, is unstable with respect to twisting from the Did 
geometry. The other low-lying twisted state (3A2 state) cor­
relates with the planar 3B]11 (ir,7r*) T state. 

The higher pair are known to be ionic'-3 and highly polari-
zable4 and thus are considered to be zwitterionic states. Of 
these, the 'B2 or V state correlates with the planar 1B]11 (ir,7r*) 
V state while the 1Ai or Z state correlates with a much higher 
planar state where both ir electrons have been excited to the 
7r* orbital. In the absence of an external field, in Did symmetry, 
the wave functions of the zwitterionic states may be qualita­
tively described as 

Z state ^ = 0 A ( 1 ) 0 A ( 2 ) + <AB(1)0B(2) (1) 

V state * = 0 A ( 1 ) * A ( 2 ) - 0 B ( 1 ) 0 B ( 2 ) (2) 

where the atomic carbon p orbitals 4>A and 4>B are sketched 
below. 
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As written neither of these states has a dipole moment. 
However, when an interaction is introduced by an external field 
or by a geometry change these states may mix, causing distinct 
polarity. The requirements for mixing are that first, there must 
be little or no incipient overlap between radical sites, and sec­
ond, that there must be a dissymmetry between the sites.5 In 
other related systems of interest, substituents other than hy­
drogen may also result in the necessary dissymmetry between 
the radical sites. 

Bonacic-Koutecky, Bruckmann, Hiberty, Koutecky, Le-
forestier, and Salem have noted5 that the charge separation 
for the related allyl system peaks very sharply about the twisted 
geometry and drops to practically zero outside a narrow 2° 
region about 8 = 90°. This is the origin of the term "sudden 
polarization". This zwitterionic polarization can be qualita­
tively understood by the coupling matrix 

HJE*-E Hab \ 
\Hab Eb-Ej V ' 

where £ a and Eb are the electronic energies of the ionic forms 
of 4>A and </>B, and H^ represents the exchange and overlap 
terms between the two forms. 
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Abstract: Nonempirical molecular electronic structure theory has been used to investigate the concept of "sudden polariza­
tion". In particular, the departure of twisted ethylene from ideal Did geometries has been studied. Initially, configuration in­
teraction (CI) studies of all four electronic states (of twisted C2H4) arising from the e2 orbital occupancy were completed. The 
predicted C-C bond distances and energies relative to the planar ground state follow: 1Bi (N state) 1.49 A, 2.6 eV; 3A2 (T 
state) 1.49 A, 2.7 eV; 1B2 (V state) 1.40 A, 5.9 eV; 1A, (Z state) 1.40 A, 5.8 eV. A major theoretical problem for the zwitter­
ionic Z and V states is to formulate a type of wave function which passes smoothly and correctly from Did to non-Did geome­
tries. This problem has been solved and the ensuing calculations predict rather large dipole moments as the Z and V states be­
come pyramidalized. For example, with one of the CH2 groups bent out of its Did plane by only 5°, the Z and V state dipole 
moments \iz (along the C-C axis) are +1.25 and —1.18 D, respectively. The differing dipole moment signs are meant to imply 
that for the Z state, the pyramidalized methylene carries the negative charge. The Z state, the lower of the two zwitterionic 
states, has a pyramidalization angle 0 of 31 ° at its equilibrium geometry. 
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